
New Block Cipher: ARIA

Daesung Kwon1, Jaesung Kim2, Sangwoo Park1, Soo Hak Sung3,
Yaekwon Sohn2, Jung Hwan Song4, Yongjin Yeom1, E-Joong Yoon1,

Sangjin Lee5, Jaewon Lee2, Seongtaek Chee1, Daewan Han1, and Jin Hong1

1 National Security Research Institute,
161 Gajeong-dong, Yuseong-gu, Daejeon 305-350, KOREA

{ds kwon, psw, yjyeom, yej, chee, dwh, jinhong}@etri.re.kr
2 International Science Culture Institute,
P. O. Box 200, Socho-gu 137-602, KOREA
{ijkim1, shrek52, bokmin48}@lycos.co.kr

3 Department of Computing information & mathematics, Paichai University,
426-6 Doma-dong, Seo-gu, Daejeon 302-735 KOREA

sungsh@mail.pcu.ac.kr
4 Department of Mathematics, Hanyang University,

17 Haengdang-dong, Seongdong-gu, Seoul 133-791, KOREA
camp123@hanyang.ac.kr

5 Graduate School of Information Security, Korea University,
1, 5-Ka, Anam-dong, Sungbuk-ku, Seoul 136-701, KOREA

sangjin@korea.ac.kr

Abstract. In this paper, we propose a 128-bit block cipher ARIA which
is an involution substitution and permutation encryption network(SPN).
We use the same S-boxes as Rijndael to eliminate defects which are
caused by a totally involution structure. In the diffusion layer of ARIA,
a 16×16 binary matrix of the maximum branch number 8 is used to avoid
some attacks well applied to the reduced round of Rijndael. ARIA uses
only basic operations, S-box substitutions and XOR’s together with an
involution structure so that it can be efficiently implemented on various
platforms.

1 Introduction

The block cipher Rijndael[1] has been selected as AES (Advanced Encryption
Standard) by NIST in 2000[2] and also selected as a portfolio of NESSIE(New
European Schemes for Signature, Integrity and Encryption) project with Camel-
lia[3], MISTY1[4] and SHACAL-256[5] in 2003. The ciphers, Rijndael and Camel-
lia have 128-bit block size and 128-, 192-, and 256-bit key lengths which are the
interface specifications of AES, are considered as representative ciphers which
satisfy such the interface. Rijndael[1] is an SPN cipher and uses operations such
as multiplications in a finite field to have a diffusion effect of the states in 32-bits.
Camellia[3] is a Feistel cipher and uses an 8×8 binary matrix to have a diffusion
effect of the states in 64-bits.

2 Daesung Kwon et al.

In this paper, we propose a 128-bit block cipher ARIA which is an invo-
lution SPN which has been studied by AES developers. Khazad[6] and Anu-
bis[7], which has been submitted to NESSIE project[8], are involution SPN
ciphers and have involution substitution and diffusion layers by using opera-
tions such as multiplications in a finite field. Those variations are favorable
in considering the efficiency, but some flaws[9] caused by the totally involu-
tion structure have been found. ARIA is an involution SPN block cipher which
is not totally involutional. More precisely, the substitution layers are not in-
volution. Therefore, the flaws given in [9] cannot be applied to ARIA. ARIA
uses an involutional diffusion layer which is a 16 × 16 binary matrix. Also
ARIA uses two kinds of S-boxes S1, S2 and two types of substitution layers
(LS,LS,LS,LS), (LS−1, LS−1, LS−1, LS−1) where LS = (S1, S2, S

−1
1 , S−1

2). The
substitution layers are arranged for ARIA to be an involution structure described
as follows. In each odd round, the substitution layer is (LS,LS,LS,LS), in each
even round, the substitution layer is (LS−1, LS−1, LS−1, LS−1). In addition to
the involution SPN structure, we choose a diffusion layer to resist against pow-
erful attacks which have been applied to reduced round Rijndael and Camellia,
such as collision attacks[10], partial sum attacks[11], and truncated differential
attacks. Since the size of the states mixed by the diffusion layers of Rijndael and
Camellia are only a quarter or a half the size of a block, attacks which are listed
the above are valid for some reduced rounds of those block ciphers. A diffusion
layer which mixes all states is one of design principles and it is selected among
16 × 16 matrices. Note that a 16 × 16 matrix with entries aij ∈ F , where F is
a finite field that is not GF (2) is not a good choice because they are heavily in-
volved with multiplications in a finite field F . Therefore 16× 16 binary matrices
are only candidates.
The maximum branch number of an invertible 16×16 binary matrix is 8 and

the maximum branch number of an invertible 16 × 16 matrix with entries in a
finite field is 17, which will be published later. We construct such an involution
binary matrix of branch number 8, and use some mathematical techniques to
find a form in product of matrices, which is for increasing efficiency in 8-bit and
32-bit software implementations.
The cipher ARIA is an involution SPN cipher without having any weakness

in S-boxes unlike Anubis and Khazad. The specifications of ARIA in detail are
given in Section 2 and motivations of the design are given in Section 3. In Section
4, techniques of efficient implementation for 8-bit/32-bit processors are given.
Security analysis against known attacks are given in Section 5.

2 Specifications

2.1 Notations

We use the following notations for describing ARIA.

– Si(x) : The output of S-box Si(i = 1, 2) for an input x
– A(x) : The output of diffusion layer for an input x

New Block Cipher: ARIA 3

– ⊕ : A bitwise XOR operation
– ‖ : Concatenation of two operands
– ≫ n : Right circular rotation of operand by n bits
– ≪ n : Left circular rotation of operand by n bits
– · : Multiplication of two operands, matrix and vector, or two matrices

2.2 The round transformation

Each round of the cipher consists of the following three parts.

1. Round key addition: This is done by XORing the 128-bit round key.
2. Substitution layer: There shall be two types of substitution layers.
3. Diffusion layer: A simple linear map which is an involution.

Note that the diffusion layer of the last round is replaced by a round key addition.

Substitution layer We use 2 S-boxes S1, S2 and their inverses S
−1
1 , S−1

2 . The
each S-box is defined to be an affine transformation of the inversion function
over GF(28).

S : GF(28)→ GF(28),

S1 x 7→ A · x−1 ⊕ a,

where

A =













1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1













and a =













1

1

0

0

0

1

1

0













.

and

S2 x 7→ B · x247 ⊕ b,

where

B =













0 1 0 1 1 1 1 0

0 0 1 1 1 1 0 1

1 1 0 1 0 1 1 1

1 0 0 1 1 1 0 1

0 0 1 0 1 1 0 0

1 0 0 0 0 0 0 1

0 1 0 1 1 1 0 1

1 1 0 1 0 0 1 1













and b =













0

1

0

0

0

1

1

1













.

The precalculated values of S1, S2 and S−1
1 , S−1

2 are given in Table 1 and
Table 2. For example, S1(0x00) = 0x63, S1(0x05) = 0x6b, and S1(0x72) = 0x40.
ARIA has two types of S-box layers as shown in Figure 1.
The two types are used alternately and we use an even number of rounds so

as to make the cipher involution. Type 1 is used in the odd rounds and type 2
is used in the even rounds.

4 Daesung Kwon et al.

Table 1. S-box S1 and S−1

1

S-box S1 S-box S−1
1

0 1 2 3 4 5 6 7 8 9 a b c d e f 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0 1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15 2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75 3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84 4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf 5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2 7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73 8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db 9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79 a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08 b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16 f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

Table 2. S-box S2 and S−1

2

S-box S2 S-box S−1
2

0 1 2 3 4 5 6 7 8 9 a b c d e f 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 e2 4e 54 fc 94 c2 4a cc 62 0d 6a 46 3c 4d 8b d1 0 30 68 99 1b 87 b9 21 78 50 39 db e1 72 9 62 3c

1 5e fa 64 cb b4 97 be 2b bc 77 2e 03 d3 19 59 c1 1 3e 7e 5e 8e f1 a0 cc a3 2a 1d fb b6 d6 20 c4 8d

2 1d 06 41 6b 55 f0 99 69 ea 9c 18 ae 63 df e7 bb 2 81 65 f5 89 cb 9d 77 c6 57 43 56 17 d4 40 1a 4d

3 00 73 66 fb 96 4c 85 e4 3a 09 45 aa 0f ee 10 eb 3 c0 63 6c e3 b7 c8 64 6a 53 aa 38 98 0c f4 9b ed

4 2d 7f f4 29 ac cf ad 91 8d 78 c8 95 f9 2f ce cd 4 7f 22 76 af dd 3a 0b 58 67 88 06 c3 35 0d 01 8b

5 08 7a 88 38 5c 83 2a 28 47 db b8 c7 93 a4 12 53 5 8c c2 e6 5f 02 24 75 93 66 1e e5 e2 54 d8 10 ce

6 ff 87 0e 31 36 21 58 48 01 8e 37 74 32 ca e9 b1 6 7a e8 8 2c 12 97 32 ab b4 27 0a 23 df ef ca d9

7 b7 ab 0c d7 c4 56 42 26 07 98 60 d9 b6 b9 11 40 7 b8 fa dc 31 6b d1 ad 19 49 bd 51 96 ee e4 a8 41

8 ec 20 8c bd a0 c9 84 4 49 23 f1 4f 50 1f 13 dc 8 da ff cd 55 86 36 be 61 52 f8 bb 0e 82 48 69 9a

9 d8 c0 9e 57 e3 c3 7b 65 3b 02 8f 3e e8 25 92 e5 9 e0 47 9e 5c 04 4b 34 15 79 26 a7 de 29 ae 92 d7

a 15 dd fd 17 a9 bf d4 9a 7e c5 39 67 fe 76 9d 43 a 84 e9 d2 ba 5d f3 c5 b0 bf a4 3b 71 44 46 2b fc

b a7 e1 d0 f5 68 f2 1b 34 70 05 a3 8a d5 79 86 a8 b eb 6f d5 f6 14 fe 7c 70 5a 7d fd 2f 18 83 16 a5

c 30 c6 51 4b 1e a6 27 f6 35 d2 6e 24 16 82 5f da c 91 1f 05 95 74 a9 c1 5b 4a 85 6d 13 07 4f 4e 45

d e6 75 a2 ef 2c b2 1c 9f 5d 6f 80 0a 72 44 9b 6c d b2 0f c9 1c a6 bc ec 73 90 7b cf 59 8f a1 f9 2d

e 90 b 5b 33 7d 5a 52 f3 61 a1 f7 b0 d6 3f 7c 6d e f2 b1 00 94 37 9f d0 2e 9c 6e 28 3f 80 f0 3d d3

f ed 14 e0 a5 3d 22 b3 f8 89 de 71 1a af ba b5 81 f 25 8a b5 e7 42 b3 c7 ea f7 4c 11 33 03 a2 ac 60

New Block Cipher: ARIA 5

S1 S2 S
−1
1 S

−1
2

S1 S2 S
−1
1 S

−1
2

S1 S2 S
−1
1 S

−1
2

S1 S2 S
−1
1 S

−1
2

(a) S-box layer type 1

S
−1
1 S

−1
2

S1 S2 S
−1
1 S

−1
2

S1 S2 S
−1
1 S

−1
2

S1 S2 S
−1
1 S

−1
2

S1 S2

(b) S-box layer type 2

Fig. 1. Two types of S-box layers

Diffusion layer The diffusion layer A : GF(28)16 → GF(28)16 is given by

(x0, x1, . . . , x15) 7→ (y0, y1, . . . , y15),

where

y0 = x3 ⊕ x4 ⊕ x6 ⊕ x8 ⊕ x9 ⊕ x13 ⊕ x14, y8 = x0 ⊕ x1 ⊕ x4 ⊕ x7 ⊕ x10 ⊕ x13 ⊕ x15,

y1 = x2 ⊕ x5 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ x12 ⊕ x15, y9 = x0 ⊕ x1 ⊕ x5 ⊕ x6 ⊕ x11 ⊕ x12 ⊕ x14,

y2 = x1 ⊕ x4 ⊕ x6 ⊕ x10 ⊕ x11 ⊕ x12 ⊕ x15, y10 = x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x8 ⊕ x13 ⊕ x15,

y3 = x0 ⊕ x5 ⊕ x7 ⊕ x10 ⊕ x11 ⊕ x13 ⊕ x14, y11 = x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x9 ⊕ x12 ⊕ x14,

y4 = x0 ⊕ x2 ⊕ x5 ⊕ x8 ⊕ x11 ⊕ x14 ⊕ x15, y12 = x1 ⊕ x2 ⊕ x6 ⊕ x7 ⊕ x9 ⊕ x11 ⊕ x12,

y5 = x1 ⊕ x3 ⊕ x4 ⊕ x9 ⊕ x10 ⊕ x14 ⊕ x15, y13 = x0 ⊕ x3 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x10 ⊕ x13,

y6 = x0 ⊕ x2 ⊕ x7 ⊕ x9 ⊕ x10 ⊕ x12 ⊕ x13, y14 = x0 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x9 ⊕ x11 ⊕ x14,

y7 = x1 ⊕ x3 ⊕ x6 ⊕ x8 ⊕ x11 ⊕ x12 ⊕ x13, y15 = x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x8 ⊕ x10 ⊕ x15.

An equivalent expression would be given by a matrix multiplication as follow.



































y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15



































=



































0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0

0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1

0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1

1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0

1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1

0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1

1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0

0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0

1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1

1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0

0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1

0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0

0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0

1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0

1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0

0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1



































·



































x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15



































(1)

2.3 Key schedule

The key schedule of ARIA consists of two parts, which are initialization and
round key generation as follows.

Initialization In the initialization part, four 128-bit valuesW0,W1,W2,W3 are
generated from the master key MK, by using a 3-round 256-bit Feistel cipher.

6 Daesung Kwon et al.

Note thatMK can be of 128, 192, or 256 bit size. We first fill out the 128-bit
value KL with bits fromMK and use what is left ofMK (if any) on the 128-bit
value KR. The space remaining on KR (if any) is filled with zero as the follow.

KL||KR =MK||0 · · · 0.

Then we set

W0 = KL, W2 = Fe(W1, CK2)⊕W0,

W1 = Fo(W0, CK1)⊕KR, W3 = Fo(W2, CK3)⊕W1.

Here, Fo and Fe are even and odd round functions, respectively, given in the
previous section. The 128-bit keys CKi of the round functions are fixed to be
the rational part of π−1 and are given as follows.

CK1 = 0x517cc1b727220a94fe13abe8fa9a6ee0

CK2 = 0x6db14acc9e21c820ff28b1d5ef5de2b0

CK3 = 0xdb92371d2126e9700324977504e8c90e

This initialization process is given in Figure 2.

KL KR

W0
CK1

Fo• ⊕

W1
CK2

Fe• ⊕

W2
CK3

Fo• ⊕

W3

Fig. 2. Initialization part of key schedule

Round key generation In the generation part, combining the four values Wi

to obtain an encryption round key eki and the decryption round key dki. Note
that the number of rounds we use are 10, 12, or 14 which are depending on the
size 128, 192, or 256 of the master key. Since there is one more key addition layer
in the last round, 128-bit round keys are needed in the 11th, 13th, or 15th round,
depending on the size of master key. The value KR is also used in generating
the round keys when the master key is of 256-bit size.

ek1 = (W
≫7

0)⊕ (W ≪11

1), ek2 = (W
≪22

1)⊕ (W2),

New Block Cipher: ARIA 7

ek3 = (W
≫17

2)⊕ (W ≪16

3), ek4 = (W
≫14

0)⊕ (W ≪32

3),

ek5 = (W
≫21

0)⊕ (W ≫34

2), ek6 = (W
≪33

1)⊕ (W ≪48

3)

ek7 = (W
≪44

1)⊕ (W ≫51

2), ek8 = (W
≫28

0)⊕ (W ≪64

3),

ek9 = (W
≪55

1)⊕ (W ≪80

3), ek10 = (W
≫35

0)⊕ (W ≫68

2),

ek11 = (W
≫42

0)⊕ (W ≪66

1), ek12 = (W
≪77

1)⊕ (W ≫85

2)⊕ (W ≪96

3),

ek13 = (W
≫49

0)⊕ (W ≫102

2), ek14 = (W
≫119

2)⊕ (W ≪112

3)⊕ (KR
≪64),

ek15 = (W
≫56

0)⊕ (W ≪88

1)⊕ (KR).

The decryption round keys are different from the encryption round keys and
are derived from the encryption round keys. The ordering of round keys are
reversed followed by the output of the diffusion layer A to all round keys except
for the first and the last. The following equations represent how the decryption
keys are computed by n which is given as the number of rounds.

dk1 = ekn+1, dk2 = A(ekn), dk3 = A(ekn−1), · · · , dkn = A(ek2), dkn+1 = ek1.

2.4 The cipher

The encryption and decryption processes of an n-round ARIA, where n is even,
are given in Figure 3.

plaintext (128)

⊕ ek1

S-box layer type 1

diffusion layer A

⊕ ek2

S-box layer type 2

diffusion layer A

⊕ ek3

⊕ ekn−1

S-box layer type 1

diffusion layer A

⊕ ekn

S-box layer type 2

⊕ ekn+1

ciphertext (128)

ciphertext (128)

⊕ dk1

S-box layer type 1

diffusion layer A

⊕ dk2

S-box layer type 2

diffusion layer A

⊕ dk3

⊕ dkn−1

S-box layer type 1

diffusion layer A

⊕ dkn

S-box layer type 2

⊕ dkn+1

plaintext (128)

Fig. 3. Encryption and decryption processes

8 Daesung Kwon et al.

Note that the above two processes are identical except in the use of round
keys.

2.5 Number of rounds

The number of rounds n can be a multiple of 2. We recommend the number of
rounds of ARIA by 10-/12-/14-rounds for 128-/192-/256-bit keys, respectively.

3 Motivation for design choices

A cryptographic algorithm is usually designed so as to be implemented efficiently
in both software and hardware. However, there is no set of rules one can follow
to achieve this goal. We have designed ARIA taking into account many elements
such as gate counts, memory requirements in smart card implementations, and
software performance on multiple platforms.
The cipher consists only of four 8 × 8 substitution tables (S-boxes) and a

linear transformation which can be efficiently implemented even in 8-bit low-
end smart cards. The linear transformation, used as the diffusion layer, is an
involution 16 × 16 binary matrix. It has the maximum branch number 8, and
the number of ones has been minimized so as to reduce the total number of
logical operations. We use basic logical operations in order to ease of hardware
implementations.

3.1 S-box

We design the S-boxes to meet the following criteria.

– The size of input and output is 8. i.e., it should be a function over GF(28).
– Degree of the Boolean polynomial describing each output bit is 7.
– It has the smallest of the maximum probability 2−6 for differential charac-
teristic and linear approximation.

The S-box S on the inversion function over GF(28) is used to satisfy the above
criteria. High degree of the Boolean polynomial representing each output bit of
the S-boxes makes difficult to be applied higher order differential attacks on the
cipher.
An affine transformation which is an 8 × 8 binary matrix followed by the

inversion function is used for getting rid of fixed points and is chosen with the
maximum branch number 5.

3.2 Diffusion layer

In designing a cipher, choosing a diffusion layer is important in both efficiency
and security aspects. Since we want the cipher to be involutional and all states
to be mixed by the diffusion layer, we search a matrix in 16×16 binary matrices.
We choose a matrix which satisfies the following properties.

New Block Cipher: ARIA 9

– It should be involutional.
– The branch number should be maximal.
– It should be suitable for implementations on 8-bit/32-bit processors.
– It should be suitable for hardware implementations.

The branch number β(A) of a n× n diffusion layer A over a finite field F is
defined by

β(A) = min{wt(x) + wt(AxT)|x ∈ Fn, x 6= 0},

where wt(x) is the Hamming weight of x.
We proved that the maximum branch number of invertible 16 × 16 binary

matrices is 8 while the maximum branch number of invertible 16× 16 matrices
over finite field GF (28) is 17. This will be published later. Since the matrix
should be involutional, we searched the matrices of the form

M−1
1 ·M2 ·M1

where M2 is an involution block diagonal matrix whose diagonal consists of four
4× 4 binary matrices and M1 is any 16× 16 binary matrix which can be written
as a 4 × 4 binary matrix on the vectors with four 32-bits block entries. The
restriction are set for the efficiency on 32-bit processors.
For many matrices of the above form, we examined whether the branch num-

ber is 8 and the Hamming weights of each column is 7. More description of the
matrix will be given in Section 4 and in [12].

3.3 Key expansion

The key schedule is designed by the following criteria.

– Input to the key schedule is of 128, 192, or 256 bit size.
– Only the basic logical operations are used.
– Resistance to related key attacks.
– It should be difficult to recover the master key from a small fraction of round
keys.

– Delay time to the encryption or decryption process caused by key schedule
should be minimized.

We use a 256-bit Feistel type cipher whose core function is the same as our
round function to obtain four 128-bit values from master key. Then each round
key is derived from two of the four values and the master key by rotating and
XORing the 128-bit values. The size of each rotation was designed so as to deter
one from obtaining one round key from a combination of other round keys.
In the key expansion part, the values W0, W1, W2, W3 and the rotation bits

were chosen to satisfy the following conditions.

– In any two consecutive rounds, at least one of the 128-bit values used to
generate the round keys is not common.

10 Daesung Kwon et al.

– For any two round keys that were generated from the same set of 128-bit
values, one should not be able to recover a part of one round key from a part
of the other round key.

– Calculating the first round key should cause as little as possible delay time
to the encryption or decryption process.

4 Implementation aspects

ARIA is suitable for efficient implementations on various environments, espe-
cially in hardware. We present some techniques[12] which optimize implementa-
tions on 8-bit processors such as Smart Cards and on 32-bit processors such as
PCs.

4.1 8-bit based implementations

On an 8-bit processor, except for S-box substitution, all operations are XOR’s.
The implementation of S-box substitution requires four tables of 256 bytes.

In a straight coding, 112 XOR’s are required to implement one round except
for S-box substitutions. We present a method to reduce the number of operations
to 76 XOR’s using four additional variables T1, · · · , T4 as follows.

T1 = x4 ⊕ x5 ⊕ x10 ⊕ x15, T2 = x3 ⊕ x6 ⊕ x9 ⊕ x16,

y1 = x7 ⊕ x9 ⊕ x14 ⊕ T1, y2 = x8 ⊕ x10 ⊕ x13 ⊕ T2,

y6 = x2 ⊕ x11 ⊕ x16 ⊕ T1, y5 = x1 ⊕ x12 ⊕ x15 ⊕ T2,

y12 = x3 ⊕ x8 ⊕ x13 ⊕ T1, y11 = x4 ⊕ x7 ⊕ x14 ⊕ T2,

y15 = x1 ⊕ x6 ⊕ x12 ⊕ T1, y16 = x2 ⊕ x5 ⊕ x11 ⊕ T2,

T3 = x2 ⊕ x7 ⊕ x12 ⊕ x13, T4 = x1 ⊕ x8 ⊕ x11 ⊕ x14,

y3 = x5 ⊕ x11 ⊕ x16 ⊕ T3, y4 = x6 ⊕ x12 ⊕ x15 ⊕ T4,

y8 = x4 ⊕ x9 ⊕ x14 ⊕ T3, y7 = x3 ⊕ x10 ⊕ x13 ⊕ T4,

y10 = x1 ⊕ x6 ⊕ x15 ⊕ T3, y9 = x2 ⊕ x5 ⊕ x16 ⊕ T4,

y13 = x3 ⊕ x8 ⊕ x10 ⊕ T3, y14 = x4 ⊕ x70 ⊕ x9 ⊕ T4.

If it is implemented serially, only one extra variable is required in the method.

4.2 Software implementations on 32-bit processors

On 32-bit processors, Rijndael and Camellia can be implemented efficiently by
combining S-box substitutions and the diffusion layer by 8 × 32 table lookups.
This technique is suitable for a diffusion layer which is based on 32-bits. Since
the diffusion layer of ARIA is based on 128-bits, on 32-bit processors, it looks
less efficient than Rijndael and Camellia. However, we choose a matrix in 16×16
binary matrices which can be efficiently implemented on 32-bit processors.

New Block Cipher: ARIA 11

Since M1 is an involution(M
−1
1 = M1 in Section 3.2) The diffusion layer A

is chosen in the form of M1 ·M2 ·M1 to have an involution structure where

M1 =

(

I I I 0

I 0 I I

I I 0 I

0 I I I

)

, M2 =

(

I 0 0 0

0 P1 0 0

0 0 P2 0

0 0 0 P3

)

·

(

T 0 0 0

0 T 0 0

0 0 T 0

0 0 0 T

)

,

for the 4× 4 identity matrix I and following four 4× 4 matrices

T =

(

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

)

, P1 =

(

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

)

, P2 =

(

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

)

, P3 =

(

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

)

.

For simplifying the above notations, we use the following notations

P =

(

I 0 0 0

0 P1 0 0

0 0 P2 0

0 0 0 P3

)

, M =

(

T 0 0 0

0 T 0 0

0 0 T 0

0 0 0 T

)

.

If we let S be the S-box substitution, the one round except for key addition can
be written as A ·S =M1 ·M2 ·M1 ·S. It is easy to see that the form of M1 ·S is
not implemented efficiently by 8 × 32 table lookups. So, we make the following
modification for the representation of the diffusion layer as follows:

A =M1 ·M2 ·M1 =M1 · P ·M ·M1 =M1 · P ·M ·M1 ·M ·M

=M1 · P ·M ·M ·M1 ·M =M1 · P ·M1 ·M.

Since M is a block diagonal matrix, M · S can be implemented by 8× 32 table
lookups. It is clear that M1 is implemented by simple 32-bit word operations.
The operation P is a byte-oriented operation that is done within each 32-bit
word. Hence this gives a way to implement ARIA on a 32-bit based machine.
On 32-bit processors, the encryption speed of ARIA is at least 70% of that of
Rijndael. Notice that there are only three or four ciphers submitted in AES and
NESSIE project whose encryption speeds are in the above range. Therefore we
can see that ARIA is also efficient on 32-bit processors.

4.3 Remark on the hardware implementations

The hardware length is mainly determined by the number of S-box layers unless
diffusion layers are too heavy. Since the number of S-box layers are same as that
of Rijndael and smaller than that of Camellia, throughput is almost same as
that of Rijndael and faster than that of Camellia. Since ARIA is involutional,
it requires only one procedure to be implemented for the encryption and the
decryption unlike Rijndael. Therefore the area to be implemented in hardware
for ARIA is smaller than that of Rijndael, i.e., in considering the efficiency, ARIA
is better than Rijndael.

12 Daesung Kwon et al.

5 Strength against known attacks

5.1 Differential and linear cryptanalysis

The maximum differential probability p and the maximum linear probability q
of the S-box S for ARIA is given by

p = q = 2−6.

The branch number βd in respect to the differential cryptanalysis and the
branch number βl in respect to the linear cryptanalysis for the diffusion layer A
of ARIA are given by

βd = βl = 8.

The minimum number of active S-boxes with respect to differential and linear
cryptanalysis in r-rounds is

8 · br/2c+ 2 · (r/2− br/2c).

The upper bound on differential characteristic probabilities and linear ap-
proximation probabilities for 6-rounds is (2−6)24 = 2−144. Therefore, there are
no effective differential characteristics and linear approximations for ARIA in 6
or more rounds.

The upper bound on differential characteristic probabilities and linear ap-
proximation probabilities for 5-rounds is (2−6)17 = 2−102 which is greater than
2−128. Even if an attacker uses the 5-round differential characteristic or linear
approximation on ARIA we expect 8 or more rounds to provide sufficient resis-
tance against differential and linear cryptanalysis.

5.2 Truncated differential cryptanalysis

By computational experiments, we searched effective truncated differential char-
acteristics which distinguish the reduced-rounds of ARIA from a random permu-
tation. We found many effective truncated differential characteristics on 5 round
variant of ARIA which can be used to attack 7 rounds. However, there are no ef-
fective truncated differential characteristics on 6 or more rounds. Thus, we think
that ARIA has sufficient security against truncated differential cryptanalysis.

5.3 Impossible differential cryptanalysis

We have confirmed that there are no bytes whose difference is always zero(or
nonzero) after 2-rounds of encryption. Also, We have checked that there are no
bytes whose difference is always zero or nonzero after 2-rounds of decryption.
Therefore, we expect that there are no impossible differentials on 4 or more
rounds.

New Block Cipher: ARIA 13

5.4 Square attack(Integral cryptanalysis)

Applying the square attack on ARIA, we considered a collection of plaintexts in
which each byte is either active or passive.
In case of ARIA, for any collection of plaintexts, determining whether any

given byte position is balanced or not after 3-rounds of encryption is not possible.
Therefore, one can construct only 2-round distinguishers.

5.5 Higher order differential cryptanalysis

The S-boxes S and S−1 of ARIA have algebraic degree 7. Each output bit of
the S-box can be regarded as a Boolean function with 8 input variables. After
three rounds the algebraic degree of any intermediate bit becomes 73. Thus, the
number of plaintexts needed for higher order differential attack using a 3 round
distinguishers is greater than 2128. So only up to 2 round distinguisher may be
found for application of higher order differential attack.

5.6 Interpolation attack

In the interpolation attack, using plaintext and ciphertext pairs, the attacker
constructs polynomials describing relations between the input and output to the
cipher. If the constructed polynomials have small degree, only a small number of
plaintexts and their corresponding ciphertexts are necessary to solve for the coef-
ficients of the polynomial. This is done through the use of Lagrange interpolation
formula[14].
We expect that the complicated expression of the S-boxes used in ARIA,

together with the effect of the diffusion layer will prohibit the interpolation
attack on more than just a few rounds.

5.7 Weakness in the key schedule

Since the round keys in ARIA are always applied using the XOR operation, one
cannot find a weak key class as in IDEA. Also, we expect that there are no
equivalent keys. Thus there is no restriction on key selection. The key sched-
ule of ARIA has sufficient number of nonlinear components so as to avoid the
related key attack or any other attacks rising from the weakness of the key sched-
ule. In particular, it is impossible to calculate the encryption key from partial
information of round keys.

6 Conclusion

We have proposed a new 128-bit block cipher ARIA based on SPN structure.
ARIA is a simple and elegant algorithm with the following properties:

– uses only basic operations such as XOR and S-box substitution.

14 Daesung Kwon et al.

– uses a 16 × 16 binary matrix with branch number 8(maximal) in diffusion
layer.

– adopts an involutional structure for efficient implementations on multiple
environments.

– does not adopt a totally involutional structure to avoid flaws found in Khazad
and Anubis.

We could not find any significant weakness and have not inserted any hidden
weakness. We think that ARIA is suitable for most platforms and can be widely
used.

References

1. Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer, 2001.
2. NIST, NIST announces that Rijndael has been selected as the proposed AES.
October 2, 2000. Available at http://csrc.nist.gov/CryptoToolkit/aes/

3. Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho Mo-
riai, Junko Nakajima, and Toshio Tokita. Camellia: A 128-bit block cipher suitable
for multiple platforms - design and analysis, LNCS 2012 , pages 39–56. Springer,
2000.

4. M. Matsui, Block Encryption Algorithm MISTY, Fast Software Encryption, 4th
InternationalWorkshop Proceeding, LNCS 1267, Springer-Verlag, pp.54-68, 1997.

5. H.Handschuh, D.Naccache, SHACAL, In proceedings of the First Open NESSIE
Workshop, November 2000.

6. P. S. L. M. Barreto and V. Rijmen, The Khazad legacy-level block cipher. Primitive
submitted to NESSIE, Sept. 2000.

7. P. S. L. M. Barreto and V. Rijmen, The Anubis block cipher. Primitive sub- mitted
to NESSIE, Sept. 2000.

8. NESSIE Project, New European Schemes for Signatures, Integrity and Encryption,
Homepage-avaiable at http://cryptonessie.org.

9. A. Biryukov, Analysis of Involutional Ciphers: Khazad and Anubis, In Fast Soft-
ware Encryption, Proceedings of FSE 2003.

10. H. Gilbert and M. Minier, A collision attack on seven rounds of Rijndael, Proceed-
ing of the third AES conference, pp230–241, NIST, 2000.

11. N. Ferguson, J. Kesley, S. Lucks, B. Schneier, M. Stay, D. Wagner and F. Whiting,
Improved Cryptanalysis of Rijndael, In Fast Software Encryption, Proceedings FSE
2000, LNCS #1978, pp. 213–230, Springer-Verlag, 2000.

12. BonWook Koo, HwanSeok Jang, JungHwan Song. Constructing and Cryptanalysis
of a 16x16 Binary Matrix as a Diffusion Layer. , editors,WISA2003, Lecture Notes

in Computer Science, Springer, 2003.
13. David Wagner. The boomerang attack. In Lars R. Knudsen, editor, Preproceedings

of Fast Software Encryption Workshop 1999, pages 155–169, 1999.
14. Thomas Jakobsen and Lars R. Knudsen. The interpolation attack on block ciphers.

In Eli Biham, editor, Preproceedings of Fast Software Encryption Workshop 1997,
pages 28–40, 1997.

